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This article is based on a talk delivered to Secondary School students taking part in the Gifted Education 

Programme Science Camp 1995 at the National University of Singapore. It deals with the application of 

Mathematics to Geography, more precisely to the subject of map projections. The maps which appear in 

this article have been produced by some small BASIC programs. A diskette containing these programs will 

be given to any school which places an order of the current issue of the Medley. The interested reader 

may copy the files of this diskette and experiment with map projections on her or his own. See section 

5 for details about the sample programs. 

1. Introduction 

Map making seems to be so easy! At first, fix any point on earth (your home, or, if you are on the payroll 

of a ministry of the current world super empire, preferably the center of the empire). Then, draw a straight 

line in North-South direction through that point, and call it the degree zero meridian. Now, draw a line 

which is orthogonal to the first one. You get a rectangular coordinate system. Secondly, draw another 

rectangular coordinate system on a sheet of paper, and, using some scale factor, transfer every point from 

nature to the paper. 

Such a world map exists since long, it can be found in school books on History and is attributed to 

Eratosthenes (276-196), a Greek geographer who worked in Alexandria in Egypt. Not surprisingly, 

Eratosthenes has chosen this town as the centre of his coordinate system. 

If one would apply Eratosthenes' method today, one would perhaps choose the equator of the earth as 

a base line, and one would draw meridians and latitude l.ines in equal distances. This would create our 

first map projection which is called a cylindrical equidistant projection, or the Eratosthenes projection, 

for short. 

The Eratosthenes projection (Fig. 1) is simple and looks just perfect, 

but"it has a fundamental inaccuracy: The meridians are parallel lines 

only on the map. In reality, they are not, but they intersect in the 

North Pole and in the South pole. A lot more is wrong with the map. 

If a sailor would use it for navigation, and steer a constant compass 

course on sea, and plot his trip on the map, then he would not obtain 

a straight line, but a pretty complicated curve. If a sociologist would study the density of population and 

plot every person as a dot on the map, then the resulting picture would not properly reflect population 

density, since the sizes of areas are distorted. 

Since the surface of the earth is a sphere, or globe, there will be no plane map without distortion. 

However, by choosing an appropriate map projection, one can make sure the map meets certain demands 

of the user, e.g. it does map constant compass course journeys as straight lines, or it does map the sizes 

of areas without distortion. 
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It is here where Mathematics enters the scene. What we need is a precise concept 

of "distortion". In order to control the distortion of a map, we have to describe the 

map by a formula. The next sections deal with the question of how to find these 

formulas. 

2. Geometrically generated maps 

It is quite obvious how the Eratosthenes projection map (Fig. 1) can be described 

by a formula: The point P on the globe located at longitude 'A and latitude ~ is 

assigned to the point P' on the map with coordinates x = c'A and y = c~. In this 
Fig. 2 

formula, c is some scaling factor. For simplicity, we will omit the factor c in all formulas to follow. Also, one may use the 

convention that 'A ranges between -180 and 180 degrees (0 at Greenwich, negative to the West, positive to the East), and ~ ranges 

between -90 and 90 degrees (0 at the equator, negative to the South, positive to the North). 

There are three immediate methods to obtain maps geometrically. (The reader who is familiar with basic trigonometry may verify 

the given formulas.) 

1) Wrap a plane around the globe such that it forms a cylinder which touches the globe at the equator. For any point P on 

the surface of the globe (well, almost any, one has to exclude the poles.), draw a straight line from the centre C of the globe 

through P until it intersects the cylinder in the point P'. The map from P to P' establishes the "cylindrical projection". 

Choosing a proper x - y- coordinates system on the plane, this map can be described by the formula x = 'A and y = tan~, 

where tan denotes the tangent function. 

2) Have a plane and cut a wedge-shaped piece off. 

Form what remains to a cone and let it rest on the top 

of the globe. Get the "conical projection" analogous to 

the procedure described in 1 ). The reader may try to 

find the formula for this projection by her or his own. 

3) Let a tangent plane rest on top of the globe. Again, apply the method from 1) to get 

an "azimuthal projection". If one uses polar coordinates, its formula is 8 ='A, r =cot~. 

You may convert these into Cartesian coordinates. 

It is obvious that the cylindrical projection is good for equatorial regions, but it vastly 

exaggerates sizes of areas close to the pole. Greenland looks bigger than South America, 

and Antarctica looks like the biggest of all continents (See Fig. 2). The azimuthal projection 

(Fig. 3) is fine for the polar regions, but it is unusable for regions close to the equator 

(though most favourable for Singapore ... ). The conical projection seems to be good for 

regions of medium latitude. In fact, most maps of the United States make use of this 
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projection. 

Fig. 4 

on the PC 

Fig. 3 
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3. More Maps 

There are many modifications of the map making methods described in section 

2. One may use secant instead of tangent cylinders or cones. Also, one may 

choose different aspects, e.g. one may place a tangent plane not at the North 

pole, but at any point of the globe. Fig. 4 demonstrates how unusual an ordinary 

cylindric projection looks like, when the wrapping cylinder contacts the globe not 

at the equator, but at another great circle, e.g. the one which passes through 

Singapore and, say, Munich (Bavaria). 

Although not generated in a geometric way, Eratosthenes' projection is also 

considered to be cylindrical, since it shows a grid pattern similar to that of the 

cylindrical projection. 

The same holds for the famous Mercator projection, given by the formulas x = A., 

y = ln(tan(45 + ~/2)). It was invented by Gerhard Mercator in 1569 and is in use 

for maritime navigation up to the present day, since it just has the nice property 

mentioned in section 1 to map straight compass courses as straight lines. 

What would be a good map of the moon? Since it doesn't happen too often that 

we set our foot on the moon's soil and have to navigate there, it may better meet 

astronomer's demands to map the moon as it appears in a telescope. This is done 

by the orthographic projection. See Fig. 5 for the Earth's view, under this projection. 

(How can this projection be constructed geometrically?) 

The azimuthal equidistant projection with aspect North pole (Fig. 6) looks similar to the azimuthal 

projection from section 2. However, it is not constructed geometrically, but it is characterized by the 

property that distances from the North pole to any other point on the globe are shown in correct 

proportions. Check the formula e = A., r = 90 - ~I in ·polar coordinates. 

How about maps which show area sizes in their true proportions? Surprisingly, they do exist, and there 

are many of them. They are called equal-area maps. The cylindrical equal-area projection is given by 

the formulas x =A., y =sin~. See Fig. 7. Note that, compared to Erastosthenes1 projection, polar regions 

are vertically compressed, now. Another equal-area projection is the sinusoidal projection, x = A.cos~, 

y = ~~ Fig. 8 We can show in the next section that these are in fact equal area projections. 

My personal favourite is the Mollweide projection. It is also equal-area, and, in its ordinary aspect, it 

is often used for thematic world maps such as population maps or climate maps, see Fig. 9. A Singapore 

aspect is shown in Fig. 10. The Mollweide projection develops its entire beauty under oblique aspects, 

see the grid only in Fig. 11. 

Fig. 6 

4. Distortion 

Every map has a nominal scale, such as 1 :100000. Does this mean 

that 1 em on the map represents 1 km in nature? Not at all! This 

may only hold for certain points and in certain directions on the 

map. In other points of the map, 1 em may mean more or less than 

1 km. We can now give a definition of distortion. Imagine you are 

at a point P on the globe and looking into the direction a (say, a 

= 0 means North, a= 45 means Northeast etc.) Now draw a little 

arrow of length I on the ground, starting at P and having the 

direction of a. Find this arrow on your map and measure its length 

Fig. 9 

Fig. 10 

Fig. 11 
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Fig. 7 

Fig. 8 

there. Multiply it by the nominal map scale to get the 

number L. Then the quotient m = 1/L is called the distortion 

of the map at Pin the direction of a. Recall from sections 

2 and 3 that every map can be described by a pair of 

formulas x = f(A., $) and y = g(A., $). Readers who are 

familiar with differentiability will be able to form fl., f~, 

gl., g~ which simply mean the derivatives of the functions 

f and g with respect to the variables A. and $, respectively. 

Now let E = f! + g~. F = f.(~ + gl.g~, G= fi + g~ (all of 

them evaluated at the point P). Then there is the following 

formula for m at P in the direction of a: 

m2 = fcos 2a + - 2
-Fsinacosa + - 1

-Gsin2a 
cos$ cos2$ 

It cannot be enough emphasized how useful this formula 

is, and how many stunning applications it allows. The interested reader is referred to the beautiful book [C­

D] by Canters and Decleir (which has been very inspiring for me). Here, let us give one example only: One 

can prove that a map is equal-area if and only if ~ EG - F
2 

= cos$. It is an easy exercise to verify this 

condition for the cylindrical equal-area map and the sinusoidal map from section 3! 

The quantities f, F and G are called the Gaussian fundamental quantities, named after Carl Friedrich Gau~ 

(1777-1855). Gau~ is not only considered to be one of the greatest mathematicians ever, he also made far­

reaching contributions to physics and astronomy. His work on map projections can be seen as a root of an 

area of mathematics which is most fashionable today: Differential 

Geometry. His country has recently honoured him by showing his portrait 

and symbols of some of his ideas on a banknote. (Or should one better 

say: The banknote has been decorated with ... ?) You will find parts of 

the banknote reproduced in this article. On the title page of this edition 

of the "Medley", you can find Gau~' portrait (with kind permission of 

Deutsche Bundesbank, Frankfurt am Main). 

5. Maps visualized on the PC 

AS0822116G8 

All the maps in this article have been produced with the BASIC programs from the accompanying diskette. 

There are some more programs on the diskette, e.g. one to produce the Mercator map, and a movie of the 

rotating globe. Many of the programs allow the user to define the mapping aspect and to produce unusual 

maps which cannot be found in atlases. 

Feel free to copy the files from the diskette, but be warned: The ad-hoc programs are experimental, not 

documented and by no means perfect! Everybody is encouraged to make improvements. Readers who are 

familiar with (spherical) trigonometry and with matrices .may write their own programs, using the Eratosthenes 

map (this is on the file K.MAP) as a data base. Lucky readers who have access to the Internet will find many, 

many more data bases there, such as incredibly detailed pixel maps, contour maps, digital elevation data 

which would allow the creation of colourful topographic maps and much more. A first project might be the 

production of conical maps whose formulas have not been given in this article. There are endlessly many 

more projects. M' 
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